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We present and discuss new shallow-water equations that model the long-time effects
of slowly varying bottom topography and weak hydrostatic imbalance on the vertically
averaged horizontal velocity of an incompressible fluid possessing a free surface and
moving under the force of gravity. We consider the regime where the Froude number
ε is much smaller than the aspect ratio δ of the shallow domain. The new equations
are obtained from the ε→ 0 limit of the Euler equations (the rigid-lid approximation)
at the first order of an asymptotic expansion in δ2. These equations possess local
conservation laws of energy and vorticity which reflect exact layer mean conservation
laws of the three-dimensional Euler equations. In addition, they convect potential
vorticity and have a Hamilton’s principle formulation. We contrast them with the
Green–Naghdi equations.

1. Introduction
In this paper we derive equations that model the long-time effects of slowly varying

topography and weak hydrostatic imbalance on the incompressible motion of an
inviscid fluid in a shallow basin. These equations arise at two successive levels of an
asymptotic expansion. Their structure is analogous to that of the two-dimensional
Euler equations for an ideal incompressible fluid in that they locally conserve some
energy and vorticity, convect some potential vorticity, have a Kelvin circulation
theorem, and possess a Hamilton’s principle formulation.

We consider fluid contained in a basin by a uniform gravitational acceleration g
and fixed vertical lateral boundaries (i.e. no sloping beaches). The horizontal spatial
coordinate x is thereby confined to a fixed bounded domain D with boundary ∂D.
The vertical coordinate z is chosen so that the mean height of the fluid’s free upper
surface is at z = 0. The fixed bottom topography is given by z = −b(x), where b(x) is
strictly positive over D. The free upper surface is given by z = h(x, t), so that the total
thickness of the fluid layer is η(x, t) = b(x) + h(x, t). Consistency with the definition
of h requires that h(x, t) > −b(x) for every x ∈ D and t > 0. Both ∂D and b(x) are
assumed to vary in x over distances L that are large compared to the mean depth B,
thereby defining a small aspect ratio denoted as δ ≡ B/L.

The fluid motion is taken to be governed by the three-dimensional Euler equations
for incompressible flow. The fluid velocity is decomposed into its horizontal and
vertical components, denoted as u and w respectively. We will consider only those
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Figure 1. The set-up for the lake and great lake equations. Vertical scales have been exaggerated.

motions for which u, w and h each vary in x over distances L, that is, we will make
the long-wave approximation. In addition, we will assume that u has a characteristic
magnitude U that is small compared to the gravity wave speed (gB)1/2, thereby
defining a small ‘Froude number’ denoted as ε ≡ U/(gB)1/2. For such motions w is
smaller than U by a factor δ, while h is smaller than B by a factor ε2. The situation
is illustrated in figure 1.

Shallow-water equations arise in regimes where δ is small (cf. Pedlosky 1987, p. 57,
or Whitham 1974, ch. 13). To leading order the fluid will then be in hydrostatic
balance and the horizontal fluid velocity u can be assumed to be columnar – namely,
independent of z. Rigid-lid equations arise in regimes where ε is small (cf. Allen,
Newberger & Holman 1996). To leading order gravity waves will then be negligible.
In regimes where both ε and δ are small the leading-order evolution of u(x, t) and
h(x, t) will be governed by equations that have the non-dimensional form

∂tu+ u · ∇u+ ∇h = 0 , ∇ · (bu) = 0 , (1.1)

where ∇ is the horizontal gradient. Because these equations apply to a domain which
is shallow compared to its width and whose free surface exhibits negligible surface
motion, we call them the ‘lake’ equations. As we will see, the lake equations are quite
robust, as they arise either as the long-wave approximation to the rigid-lid equations
(ε → 0 first, then δ → 0) or as the small-Froude-number limit of the shallow-water
equations (δ → 0 first, then ε→ 0).

Our main concern will be regimes where ε� δ. We will carry out the δ-expansion
of solutions of the rigid-lid equations to the next order, O(δ2). At this order, the
evolution of the vertically averaged horizontal fluid velocity, which we also denote by
u(x, t), and h(x, t) are found to be governed by new asymptotic equations, which we
call the ‘great lake’ (GL) equations; these have the non-dimensional form

∂tv + u · ∇v + (∇u)v + ∇
(
h− 1

2
|u|2
)

= 0 , ∇ · (bu) = 0 . (1.2)

Here (∇u)v =
∑2

j=1 vj∇uj . The GL equations are written in terms of the auxiliary field
v(x, t) defined by

v = u+ 1
6
δ2b2∇(∇ · u) . (1.3)

Subject to the divergence condition ∇ · (bu) = 0, we show that relation (1.3) defines
a certain positive-definite (and hence invertible) operator which relates u to v. The
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invertibility ensures that u depends continuously on v. The curl of v turns out to model
the vertical average of a particular z-dependent component of the three-dimensional
Euler vorticity. In particular, for motion originating from rest, which is necessarily
irrotational, we show that this curl, and not the curl of u, must vanish.

Notice that when the bottom is flat (∇b = 0) both the lake and GL equations
reduce to the two-dimensional incompressible Euler equations with h playing the role
of pressure. Indeed, we shall see that these equations share many structural similarities
with the two-dimensional incompressible Euler equations. For example, in each case h
is determined from an elliptic problem that arises from preservation of the (weighted)
divergence condition.

Section 2 contains the derivation of the above equations starting from the three-
dimensional Euler equations dimensionally rescaled in terms of δ and ε. We assume
that the Froude number is much smaller than the aspect ratio (ε � δ) and obtain
the so-called rigid-lid approximation by keeping only the leading-order terms in
ε. Solutions of these equations are then expanded asymptotically in δ2. The lake
equations (1.1) arise at the leading-order while the GL equations (1.2) arise at O(δ2).
Section 3 shows how solutions of the GL equations obey local conservation laws
for energy and vorticity. Moreover, solutions of the GL equations are shown to
convect a potential vorticity. Section 4 shows how these structures reflect similar
laws for vertically averaged quantities that are obeyed by solutions of the original
Euler equations, including following from Hamilton’s principle. Section 5 shows
that the GL equations can also be understood as the ε → 0 limit of the shallow-
water equations studied by Green & Naghdi (1976). The Green–Naghdi equations
retain finite-amplitude gravity waves and their associated Boussinesq-type dispersion
properties, which are removed in the GL equations by taking the ε→ 0 limit.

2. Derivation of the model equations
2.1. The scaled Euler equations in three dimensions

The motion of an inviscid, incompressible fluid in the basin described above is gov-
erned by the three-dimensional Euler equations. We form non-dimensional variables
in terms of the following natural units: ρ, the mass density; B, the mean depth; and
(gB)1/2, the gravity wave speed. Because the horizontal length scales are assumed to
be long compared to B by the inverse aspect ratio 1/δ where δ � 1, we introduce
non-dimensional spatial variables (denoted with asterisks) by

x =
1

δ
Bx∗ , z = Bz∗ . (2.1)

Because the horizontal fluid speed is assumed to be small compared to the gravity
wave speed (gB)1/2 by a factor of the Froude number ε where ε� 1, and bearing in
mind the aspect ratio, we introduce non-dimensional horizontal and vertical velocity
fields by

u = ε(gB)1/2u∗ , w = δε(gB)1/2w∗ . (2.2)

We will work with the modified pressure p (see Batchelor 1967, p. 176), which is
related to the total pressure ptot by ptot = p− ρgz; that is, p removes the hydrostatic
part of the pressure −ρgz arising from the trivial static solution. We introduce the
non-dimensional surface elevation h∗ and (modified) pressure field p∗ by

h = ε2Bh∗ , p = ε2ρgBp∗ . (2.3)



176 R. Camassa, D. D. Holm and C. D. Levermore

Finally, we introduce a non-dimensional temporal variable by

t =
1

δε

(
B

g

)1/2

t∗ . (2.4)

This is the time scale for a fluid parcel to traverse a typical horizontal length, which
is longer than that for a gravity wave to traverse the same length by O(1/ε). Thus,
the scaling in equations (2.1)–(2.4) selects shallow-water motions that have surface
fluctuations whose amplitudes are small of O(ε2) compared to the mean depth and
consequently evolve on time scales which are long of O(1/ε) compared to the time
scales of gravity wave evolution.

In the scaled variables (2.1)–(2.4) the non-dimensional form of the motion equations
becomes (after dropping the asterisks)

∂tu+ u · ∇u+ w∂zu+ ∇p = 0 , (2.5)

δ2
(
∂tw + u · ∇w + w∂zw

)
+ ∂zp = 0 . (2.6)

These non-dimensional equations retain their dimensional form except that the vertical
acceleration acquires a factor of δ2. The non-dimensional form of the incompressibility
condition acquires no small parameters and is

∇ · u+ ∂zw = 0 . (2.7)

The dimensionless boundary conditions acquire factors of the small parameter ε2 as
follows. On the free surface we neglect surface tension and set the total pressure to
zero, whereby the modified pressure p satisfies the dynamical boundary condition

p = h for x ∈ D and z = ε2h(x, t) . (2.8)

We also assume that no fluid crosses the boundaries (i.e. that the normal fluid velocity
equals the interface velocity), which gives the kinematic boundary conditions

w = ε2 (∂th+ u · ∇h) for x ∈ D and z = ε2h(x, t) , (2.9)

w = −u · ∇b for x ∈ D and z = −b(x) , (2.10)

n̂ · u = 0 for x ∈ ∂D and −b(x) < z < ε2h(x, t) , (2.11)

where n̂ is the outward unit normal on ∂D. Because the total volume of water remains
fixed, we adopt the normalization∫

D
h(x, t) dxdy = 0 , (2.12)

which states that the mean level of the upper water surface is fixed at z = 0.
In subsequent sections, we are going to make extensive use of vertical averages,

or layer means, of dependent variables. For any function f(x, z, t), the corresponding
layer mean will be denoted by f. In the context of the free upper surface f is given
by

f(x, t) ≡ 1

η(x, t)

∫ ε2h(x,t)

−b(x)

f(x, z, t) dz , (2.13)

where in the rescaled variables η = b+ ε2h. The layer mean of a convective derivative
satisfies the useful identity (cf. Wu 1981)

η (∂tf + u · ∇f + w∂zf) = ∂t
(
η f
)

+ ∇ ·
(
η uf

)
, (2.14)
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as one can show via integration by parts and using the kinematic boundary conditions
(2.9) and (2.10).

By choosing f = 1 and f = u in (2.14) and using (2.7) and (2.5) respectively, we
obtain

∂t η + ∇ · (ηu) = 0 , (2.15)

and

∂t(ηu) + ∇ · (ηuu) = −η∇p . (2.16)

The first equation is a local conservation law in terms of the vertical average of u
which corresponds to mass conservation for the three-dimensional flow. Shallow-water
models can generally be viewed as arising from the balance equation (2.16) through
a closure scheme based on a long-wave approximation for expressing uu and ∇p in
terms of η and u.

2.2. Leading-order models

In this article we shall consider a long-wave approximation, but in the regime of very
small surface height amplitudes – that is, in the regime

ε� δ � 1 . (2.17)

Hence, we shall first consider the non-dimensional equations (2.5) – (2.11) in the
small-Froude-number limit of ε → 0 while holding δ fixed and afterwards consider
δ small. Because ε does not appear in the non-dimensional equations (2.5)–(2.7),
these equations remain unchanged as ε→ 0. However, ε does appear in the rescaled
boundary conditions at O(ε2). Upon letting ε → 0, the dynamic boundary condition
(2.8) becomes

p = h for x ∈ D and z = 0 , (2.18)

while the kinematic boundary conditions (2.9) – (2.11) become

w = 0 for x ∈ D and z = 0 , (2.19)

w = −u · ∇b for x ∈ D and z = −b(x) , (2.20)

n̂ · u = 0 for x ∈ ∂D and −b(x) < z < 0 . (2.21)

The system of equations (2.5)–(2.7) with boundary conditions (2.18)–(2.21) is called the
‘rigid lid’ approximation because the horizontal velocity behaves as if the top surface
were fixed at its mean value. However, the designation ‘rigid’ may be misleading
here because the upper surface dynamics is recovered from the dynamic boundary
condition (2.18). The rigid-lid approximation removes gravity waves from the problem;
this can be seen from the linearization of (2.5)–(2.7) about the trivial solution. (The
boundary conditions (2.18)–(2.21) are already linear.)

In the context of the rigid-lid approximation the layer mean corresponding to a
function f(x, z, t) is given by

f(x, t) =
1

b(x)

∫ 0

−b(x)

f(x, z, t) dz . (2.22)

This is consistent with replacing η with b and setting the upper limit of integration to
zero in (2.13). The layer mean of a convective derivative satisfies the useful identity

(∂tf + u · ∇f + w∂zf) = ∂tf +
1

b
∇ ·
(
b uf

)
, (2.23)
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as one can show directly via integration by parts and using the kinematic boundary
conditions (2.19) and (2.20), which is also consistent with replacing η with b in (2.14).

By choosing f = 1 and f = u in (2.23) and using (2.7) and (2.5) respectively, we
obtain

∇ · (bu) = 0 , (2.24)

and

∂tu+
1

b
∇ · (buu) = −∇p . (2.25)

These are consistent with replacing η with b in (2.15) and (2.16), which considerably
simplifies those equations. The balance equation (2.25) will be used below, where we
will devise a closure scheme based on a long-wave approximation for expressing uu
and ∇p in terms of u.

The incompressibility condition (2.7) can be integrated in z subject to the top
kinematic boundary condition (2.19) to express w in terms of u as

w(x, z, t) =

∫ 0

z

∇ · u(x, z1, t) dz1 . (2.26)

Then the bottom kinematic boundary condition (2.20) will also be satisfied, provided
u satisfies the divergence condition (2.24). Thus, after first eliminating w by (2.26)
and then eliminating p in favour of u and h by integrating (2.6) in z subject to the
dynamic boundary condition (2.18), we can consider (2.5) and (2.24) as equations for
u and h subject to the boundary condition (2.21).

We now determine the leading-order behaviour of u, w, p and h by formally passing
to the δ → 0 limit in the motion equations (2.5) and (2.6). The w-equation (2.6)
gives the hydrostatic balance condition ∂zp = 0 which, upon applying the dynamic
boundary condition (2.18), relates the pressure to the surface height as p = h(x, t).
Hence, the horizontal motion equation (2.5) becomes

∂tu+ u · ∇u+ w∂zu+ ∇h = 0 . (2.27)

After using (2.26) to eliminate w in favour of u, this equation combines with the
divergence condition (2.24) and the lateral boundary condition (2.21) to determine
u and h. Considered as a system, (2.21), (2.24), (2.26) and (2.27) constitute the
low-Froude-number limit of the long-wave equations studied by Benny (1973) and
Zakharov (1981).

A considerable simplification is achieved by observing that the horizontal motion
equation (2.27) may be satisfied by taking u to be columnar (u = u), so that, like the
pressure, it satisfies

∂zu = 0 . (2.28)

Because its lateral boundary condition (2.21) contains no explicit z-dependence, the
motion equation (2.27) will ensure that no z-dependence will develop in the leading-
order horizontal velocity provided the initial state is z-independent. In this case
the horizontal motion equation (2.27) and divergence condition (2.24) reduce to the
system (1.1) over the horizontal domain D, while the lateral boundary condition (2.21)
reduces to simply n̂ · u = 0 for x ∈ ∂D. Given a solution u and h of (1.1) subject to
this condition, we may recover the leading-order vertical velocity w from (2.26) as

w = −z∇ · u , (2.29)

and the leading-order pressure p from hydrostatic balance as p = h.



Long-time shallow-water equations 179

The lake equations (1.1) could also have been derived by first considering the
non-dimensional equations (2.5)–(2.11) in the limit of δ → 0 while holding ε fixed
and afterwards take the ε → 0 limit. In this case the first limit corresponds to the
usual long-wave (hydrostatic) approximation and, upon assuming the horizontal fluid
velocity is columnar, leads to the shallow-water equations:

∂tu+ u · ∇u+ ∇h = 0 , ε2∂th+ ∇ ·
[(
b+ ε2h

)
u
]

= 0 , (2.30)

over the domain D with the boundary condition n̂ · u = 0. Passing to the ε→ 0 limit
in these equations, one sees that the equation for h in (2.30) becomes the divergence
condition ∇ · (bu) = 0 while the motion equation for u remains unchanged.

The lake equations (1.1) are similar to the two-dimensional incompressible Euler
equations of fluid dynamics. Indeed, the motion equation in (1.1) is identical to the
Euler motion equation with the role of the pressure being played by the free-surface
height h. The divergence condition in (1.1) differs from the Euler incompressibility
condition in that it is weighted by the depth b(x). The absence of gravity waves for the
lake equations is analogous to the absence of acoustic waves for the incompressible
Euler equations.

2.3. Next-order model

Recalling our basic scaling (2.17), we now seek solutions of the rigid-lid approximation
up to order δ2. To do so, we expand u, w, p and h in powers of δ2 as

u= u(0) + δ2 u(1) + O(δ4) , w = w(0) + δ2 w(1) + O(δ4) ,

p= p(0) + δ2 p(1) + O(δ4) , h = h(0) + δ2 h(1) + O(δ4) ,

}
(2.31)

where u(0) and h(0) solve the lake equations (1.1), w(0) is determined by (2.29), and
p(0) = h(0). These expansions will be put into equations (2.5)–(2.7) and boundary
conditions (2.18)–(2.21) and matched up to order δ2.

At O(δ2) the vertical motion equation (2.6) yields

∂zp
(1) = −∂tw(0) − u(0) · ∇w(0) − w(0)∂zw

(0)

= z

[(
∂t + u(0) · ∇

)(
∇ · u(0)

)
−
(
∇ · u(0)

)2
]
≡ z p(1)

2 . (2.32)

This equation can be integrated using the dynamic boundary condition (2.18) to find
that the pressure at O(δ2) is expressible as

p(1) = h(1)(x, t) + 1
2
z2p

(1)
2 (x, t) , (2.33)

where p(1)
2 is given in terms of u(0) by equation (2.32). This order-δ2 pressure contri-

bution shows the effects of a weakly broken hydrostatic pressure balance.
We are now in a position to compute the approximate closure of the balance

equation (2.25). First, because of the columnar motion assumption (2.28) at leading
order, we notice that

u = u(0) + δ2u(1) + O(δ4) , (2.34)

and so

uu = u u+ O(δ4) . (2.35)

Second, through (2.33) and by using (2.28) again, the vertical average of ∇p becomes

∇p = ∇h+ δ2 1
6
b2∇p(1)

2 + O(δ4) . (2.36)
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The ∇p(1)
2 term above can be expressed explicitly in terms of u through (2.32) and

(2.34) as

1
6
b2∇p(1)

2 =
(
∂t + u · ∇+

(
∇u
))(

1
6
b2∇
(
∇ · u

))
+ O(δ2) . (2.37)

Third, boundary condition (2.21) implies that u identically satisfies

n̂ · u = 0 for x ∈ ∂D . (2.38)

Finally, by inserting (2.35) and (2.37) in (2.25) and using (2.24), one easily checks that
(2.25) reduces to

∂tu+ u · ∇u+ ∇h+ δ2
(
∂t + u · ∇+ (∇u)

)(
1
6
b2∇(∇ · u)

)
= O(δ4) . (2.39)

Although no assumptions were made concerning the vertical dependence of the
correction u(1) to u(0), the result (2.39) is a closed equation for the vertical average of
the horizontal velocity u up to O(δ2).

Upon introducing the auxiliary variable v by

v ≡ u+ δ2 1
6
b2∇(∇ · u) , (2.40)

the left-hand side of equation (2.39) takes the more compact form

∂tv + u · ∇v + (∇u)v + ∇
(
h− 1

2
|u|2
)

= O(δ4) . (2.41)

Exploiting the formal smallness of the O(δ4) term, we now designate by u and h
the solution of system (2.24), (2.38), and (2.41) with this term replaced by zero, so
that u and h satisfy the GL equations (1.2) with the definition (1.3) presented in the
Introduction.

To restore the GL equations (1.2)–(1.3) to dimensional form, one simply removes
the δ2 in the definition of v (1.3) and replaces h with gh in the motion equation (1.2),
yielding

∂tv + u · ∇v + (∇u)v + ∇
(
gh− 1

2
|u|2
)

= 0 , ∇ · (bu) = 0 . (2.42)

The boundary condition n̂ · u = 0 for x ∈ ∂D remains unchanged when dimensions
are restored. It is important to note when considering initial data for (2.42) (or even
the lake equations) that care must be taken to be sure the data are consistent with the
scalings introduced in the last Section, otherwise the resulting solutions could lead to
unphysical results such as h < −b (cf. Camassa, Holm & Levermore 1996 for further
discussion).

The GL equations (1.2) reduce to the lake equations (1.1) in the limit δ → 0. The
O(δ2) difference between these equations is due to the combined effects of bottom
topography and hydrostatic imbalance. We emphasize that bottom topography and
hydrostatic imbalance play a combined role. If the bottom is flat, so that ∇b vanishes,
then ∇ ·u = 0 and v reduces to u with no correction for hydrostatic imbalance. In this
case, the second-order derivative terms in the definition of v in (1.2) vanish entirely,
and the lake equations and the GL equations both reduce to the Euler equations for
two-dimensional incompressible inviscid flow. Thus, the effects of bottom topography
and hydrostatic pressure imbalance are crucially coupled in the asymptotic shallow-
water expansion (2.31) in the small surface deviation limit, with ε = o(δ). Notice
that in this ordering ε = o(δ), the GL equations offer a o(δ2) approximation to the
original free-surface problem for the Euler equations. We also emphasize that these
coupled non-hydrostatic and topographic effects are not to be confused with ordinary



Long-time shallow-water equations 181

Boussinesq-type dispersion of gravity waves, which do not exist in this model (cf. §5,
where the comparison with gravity wave dispersion is discussed further.) We shall
analyse the lake and GL systems in the remainder of the paper.

3. Structure of the GL equations
3.1. Elliptic equation for the free-surface elevation

For those u that satisfy ∇ · (bu) = 0, relation (1.3) is equivalent to

bv = bu+
[
− 1

3
∇
(
b3∇ · u

)
− 1

2
∇
(
b2u · ∇b

)
+ 1

2
b2(∇ · u)∇b+ b(u · ∇b)∇b

]
≡ L(b)u . (3.1)

The operator L(b) defined above is self-adjoint and positive-definite (and therefore
invertible) because b > 0. Its invertibility ensures that u depends continuously on
v (cf. Levermore, Oliver & Titi 1996a, b for further discussion). In particular, the
operator L(b) arises in the solution for h from the v equation (2.42). By operating
on this equation with ∇ · bL−1(b)b and using the weighted divergence condition, an
elliptic equation is obtained for h which is reminiscent of the Poisson equation for the
pressure in the case of the Euler equations, namely

∇ ·
[
bL(b)−1

(
b
[
∇
(
gh− 1

2
|u|2
)

+ u · ∇v + (∇u)v
])]

= 0 . (3.2)

The corresponding lateral boundary condition is

n̂ ·
[
bL(b)−1

(
b
[
∇
(
gh− 1

2
|u|2
)

+ u · ∇v + (∇u)v
])]

= 0 on ∂D , (3.3)

where n̂ is the outward unit normal of the boundary ∂D. Together, (3.2) and (3.3)
determine h up to an additive constant that is fixed by the h-normalization (2.12).

3.2. Conservation of energy, vorticity and circulation

The great lake (GL) equations (2.42)–(3.1) possess several fundamental physical
properties which combine to make them particularly nice theoretically.

First, the GL equations possess a local energy conservation law. Indeed, one verifies
from (3.1) by direct calculation that

∂t

[
b
(

1
2
|u|2 + 1

6

(
u · ∇b

)2
)]

= b u · ∂tv − 1
6
∇ ·
(
b3u∂t(∇ · u)

)
. (3.4)

Upon using (2.42) to eliminate ∂tv above, one finds

∂t

[
b
(

1
2
|u|2 + 1

6

(
u · ∇b

)2
)]

+ ∇ ·
[
b u
(
gh− 1

2
|u|2 + u · v

)
+ 1

6

(
b3u∂t(∇ · u)

)]
= 0 . (3.5)

The GL equations therefore conserve the positive-definite quadratic functional

EGL =

∫
b
(

1
2
|u|2 + 1

6
(u · ∇b)2

)
dxdy , (3.6)

which can be expressed more compactly as

EGL = 1
2

∫
b u · v dxdy = 1

2

∫
u ·L(b)u dxdy , (3.7)

where v is defined by (the dimensional version of) (1.3) and ∇ · (bu) = 0 has been
used.
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Second, the GL equations (2.42) have a natural vorticity Ω which is the two-
dimensional curl of v, defined by

Ω ≡ ∇∧v ≡ ∂xv2 − ∂yv1 . (3.8)

By taking the curl of the GL motion equation (2.42), one finds that the vorticity Ω is
locally conserved, as

∂tΩ + ∇ · (uΩ) = 0 , (3.9)

and that the potential vorticity Ω/b is convected, as(
∂t + u · ∇

)(Ω
b

)
= 0 . (3.10)

This last equation gives the vorticity stretching relation along flow lines of the GL
equations: when the mean fluid depth b changes, the vorticity Ω seen by a fluid
parcel changes in proportion. The convection of Ω/b combined with the weighted
divergence condition (2.42) and the no-flux boundary condition n̂ · u = 0 yields an
infinity of conservation laws in the form

d

dt

∫
bΦ

(
Ω

b

)
dxdy = 0 , (3.11)

for any differentiable function Φ.
The GL equations (2.42) also possess a Kelvin circulation theorem. Specifically, for

any closed curve γ(t) moving with the fluid, the transport theorem (cf. Batchelor 1967,
p. 273), the Leibnitz identity ∇(u · v) = (∇u)v + (∇v)u, and equation (2.42) imply that

d

dt

∮
γ(t)

v · dx =

∮
γ(t)

[
∂tv + u · ∇v −

(
∇v
)
u
]
· dx

= −
∮
γ(t)

∇
(
gh− 1

2
|u|2 + u · v

)
· dx = 0 . (3.12)

An application of the Stokes theorem to the left-hand side of (3.12) shows that the
GL vorticity Ω given by (3.8) is conserved on fluid parcels:

d

dt

∫
Γ (t)

Ω dxdy =
d

dt

∮
γ(t)

v · dx = 0 , (3.13)

where Γ (t) is the region enclosed by the curve γ(t) moving with the fluid.
Note that the conserved energy EGL is a positive-definite quadratic form (3.6) while

the potential vorticity Ω/b, being convected (3.10), is uniformly bounded by its initial
data. These combined features distinguish the GL (and lake) equations from other
shallow-water equations such as (2.30) and the Green–Naghdi equations (discussed
in §5). Indeed, global well-posedness has recently been established for both the lake
(1.1) and GL (2.42) equations by combining these energy and vorticity estimates
(Levermore et al. 1996a, b). However, no such result exists for either the shallow water
equations (2.30) or the Green–Naghdi equations.

3.3. GL Hamilton’s principle

The GL equations (2.42) arise from Hamilton’s principle with the following con-
strained action, which reduces to the kinetic energy (3.6) when evaluated on the
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constraint manifold η − b = 0:

AGL = 1
2

∫
dt

∫
dxdy

[
η|u|2 + 1

3
η3(∇ · u)2 + η2(∇ · u)(u · ∇b) + η(u · ∇b)2

]
−
∫

dt

∫
dxdy gh (η − b)

=

∫
dt

∫
dxdy

[
1
2
u ·L(η, b)u− gh (η − b)

]
. (3.14)

Here the operator L(η, b) is given by

L(η, b)u = ηu− 1
3
∇(η3∇ · u)− 1

2
∇(η2u · ∇b) + 1

2
η2(∇ · u)∇b+ η(u · ∇b)∇b , (3.15)

and we have used the boundary condition n̂ · u = 0 in integrating by parts. In (3.14)
the surface height h enters the action AGL as a Lagrange multiplier which restricts
the thickness of the water layer η to equal the equilibrium depth to the bottom b(x).
The action in (3.14) is similar to the one introduced by Miles & Salmon (1985) for
the Green–Naghdi equations (see §5), but here the gravity waves have been removed
entirely by imposing the constraint η = b which sets their amplitude to zero.

In expression (3.14) for the GL action, the total fluid depth η and the velocity
components ui (i = 1, 2) are given in terms of partial derivatives of the Lagrangian

labels, l̃
A
(x, t), which move with the fluid and, hence satisfy

dl̃
A

dt
≡ ∂tl̃

A
+ ui∂il̃

A
= 0 , A = 1, 2 , (3.16)

where ∂i = ∂/∂xi for i = 1, 2 and we sum over repeated indices. Incompressibility
implies that the (unconstrained) total fluid depth η satisfies

η = det
(
∂il̃

A
)
. (3.17)

Thus, the fluid depth η is the Jacobian for the transformation from the current

Eulerian position xi to the Lagrangian label l̃
A

with i, A = 1, 2. As a consequence of
its definition (3.17) and the relation (3.16), the fluid depth η also obeys the continuity
equation,

ηt + ∇ · (ηu) = 0 . (3.18)

Consequently, the value η = b(x) is preserved in time, provided the weighted incom-
pressibility condition in (2.42) is satisfied. In addition, equation (3.16) implies the
following relation for the horizontal components of the fluid velocity:

ui = −(D̃−1)iA∂tl̃
A
, (3.19)

where the matrix (D̃−1)iA is the inverse of the matrix

D̃A
i ≡ ∂il̃

A
. (3.20)

The inverse matrix (D̃−1)iA exists, since det (D̃A
i ) = η 6= 0, when the constraint is

imposed that η = b 6= 0. Upon using the definitions (3.17) and (3.19) of η and u in

terms of l̃
A
, and the boundary condition n̂ ·u = 0, the GL equations (2.42) result from

stationarity of the action AGL in (3.14), under variations with respect to Lagrangian

fluid labels l̃
A
(x, t) at fixed Eulerian position and time.
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4. Relation to layer means of the Euler model
4.1. Averaged energy, vorticity and circulation conservation

The local conservation laws for energy (3.5) and vorticity (3.9) for the GL equations
are inherited from the three-dimensional Euler equations (2.5)–(2.7) with boundary
conditions (2.8)–(2.11). More specifically, they correspond to exact local conservation
laws satisfied by vertically averaged Euler quantities upon applying the rigid-lid and
long-wave approximations.

First consider energy. If we choose f to be the Euler energy density 1
2
(|u|2 + δ2w2)

in (2.14), we obtain

∂t

[
η 1

2
(|u|2 + δ2w2)

]
+ ∇ ·

[
η 1

2
(|u|2 + δ2w2)u

]
= −η (u · ∇p+ w∂zp) . (4.1)

Moreover, it follows from incompressibility (2.7), the definition (2.13) of layer means
and the boundary conditions (2.8)–(2.10) that

η (u · ∇p+ w∂zp) = ∂t
[

1
2
ε2h2

]
+ ∇ · [ηpu] , (4.2)

whereby we obtain the local conservation law for layer mean energy

∂t

[
η 1

2
(|u|2 + δ2w2) + 1

2
ε2h2

]
+ ∇ ·

[
η
(

1
2
(|u|2 + δ2w2)u+ pu

)]
= 0 . (4.3)

Here the quantities u, w, p and h solve the non-dimensional Euler equations (2.5)–(2.7)
with the boundary conditions (2.8)–(2.11).

The local conservation law for layer mean energy satisfied when u, w, p and h solve
the rigid-lid boundary approximation is obtained from (4.3) by formally setting ε = 0
and replacing η with b. This yields

∂t

[
b 1

2
(|u|2 + δ2w2)

]
+ ∇ ·

[
b
(

1
2
(|u|2 + δ2w2)u+ pu

)]
= 0 , (4.4)

where the overbar is now understood to mean the rigid-lid average (2.22). Because
the u, w, p and h that solve the rigid-lid approximation are formally within O(ε2) of
those that solve the free-boundary problem, the corresponding energy densities and
fluxes will agree to within O(ε2).

We furthermore consider δ to be small and assume the leading-order horizontal
velocity is columnar, just as we did in the derivation of the GL equations. If we
approximate |u|2 as we did with (2.35) and w2 by its leading order (2.29), the energy
density of (4.4) reduces to

1
2
(|u|2 + δ2w2) = 1

2
|u|2 + δ2 1

6
(u · ∇b)2 + O(δ4) . (4.5)

By arguing similarly while using (2.32)–(2.33) to approximate pu, the flux of (4.4) is
expressible as

1
2
(|u|2 + δ2w2)u+ pu = u

(
h− 1

2
|u|2 + u · v

)
+ δ2 1

6
b2u∂t(∇ · u) + O(δ4) , (4.6)

where v is defined in (2.40). Because u and v are formally within O(δ4) of the u
and v that solve the GL equations, relations (4.5) and (4.6) show that the density
and flux of (4.4) agree to within O(δ4) with the non-dimensional form of the density
and flux of (3.5). In particular, this argument shows that the total energy for the
rigid-lid approximation agrees with EGL in equation (3.6) to within O(δ4). By taking
into account the corrections of O(ε2) for the free-boundary problem and the relative
ordering (2.17), we can then conclude that the total energy of the original Euler
equations agrees with EGL to within o(δ2).
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The three-dimensional Euler equations also possess a local conservation law for a
vertically averaged z-dependent component of the vorticity. To express this conser-
vation law we introduce the non-dimensional form of the horizontal vorticity field ω
by

ω ≡ δ2

(
∂yw
−∂xw

)
−
(

∂zu2

−∂zu1

)
. (4.7)

One can derive the remarkable local conservation law

∂t

[
∇∧u− 1

η

(
∇η · zω + ε2(b∇h− h∇b) · ω

)]
+ ∇ · J = 0 , (4.8)

where the flux J is given by

J ≡ u∇∧u− ωw

−1

η

[(
zuω − zωu

)
∇η + ε2

(
uω − ωu

)
(b∇h− h∇b) + ε2∂th

(
(z + b)ω

)]
.

(4.9)

This result is a particular case of a more general result for vector local conservation
laws with skew-symmetric flux tensors studied by Camassa & Levermore (1997). The
conserved density in (4.8) is the vertical average of the inner product of the three-
dimensional vorticity (ω,∇∧u) and the vector field that linearly interpolates between
the normal vector (−ε2∇h, 1) at the top surface z = h and the normal vector (∇b, 1)
at the basin bottom z = −b.

The analogous local conservation law satisfied when u, w, p and h solve the rigid-
lid boundary approximation is obtained from (4.8) by formally setting ε = 0 and
replacing η with b. This yields

∂t

(
∇∧u− 1

b
∇b · zω

)
+ ∇ ·

[
u∇∧u− ωw − 1

b

(
zuω − zωu

)
∇b
]

= 0 . (4.10)

When we again consider δ to be small and assume the leading-order horizontal
velocity is columnar, one finds for ∇∧u

∇∧u = ∇∧u− 1

b
∇b∧

(
u
∣∣
z=−b − u

)
(4.11)

= ∇∧u− 1

b
∇b∧ z∂zu (4.12)

= ∇∧u− δ2 1

b
∇b∧ z∇w +

1

b
∇b · zω , (4.13)

where the last step uses the definition (4.7) of ω. The density of (4.10) can then be
shown to satisfy

∇∧u− 1

b
∇b · zω = ∇∧u+ δ2 1

3
b∇b∧∇(∇ · u) + O(δ4)

= ∇∧v + O(δ4) . (4.14)

Similarly, the flux of (4.10) satisfies

u∇∧u− ωw − 1

b

(
zuω − zωu

)
∇b = u∇∧v + O(δ4) . (4.15)

These relations show that the density and flux of (4.8) are within O(δ4) of the non-
dimensional form of the density and flux of (3.9). Hence, the v of the GL equations,
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which deviates from u by the O(δ2) correction for hydrostatic imbalance in (1.3), can
be understood as the vector whose curl represents the locally conserved density of
(4.8) to O(δ4) for the rigid-lid approximation. By taking into account the corrections
of O(ε2) for the free-boundary problem and the relative ordering (2.17), the above
approximation to the density of (4.8) for the original Euler equations is of o(δ2).

4.2. Averaged Euler Hamilton’s principle for columnar motion

The non-dimensional Euler equations in three dimensions, (2.5)–(2.6), can be derived
from an action principle – namely, they characterize the critical points of an action
AEuler of the form

AEuler =

∫
dt

∫
dxdy

∫ ε2h

−b
dzD

[
1
2
(|u|2 + δ2w2)− z − p(D−1 − 1)

]
. (4.16)

Here D = det(DA
i ), where DA

i = (∂lA/∂xi) is the 3 × 3 Jacobian matrix for the map
from Eulerian coordinates to Lagrangian fluid labels, lA(x, z, t), A = 1, 2, 3. These
Lagrangian labels specify the fluid particle currently occupying Eulerian position
(x1, x2, x3) = (x, z). They satisfy the advection law, 0 = dlA/dt = ∂lA/∂t+uiDA

i +wDA
3 ,

thereby determining the velocity components (u, w) in the action principle, as

ui =−(D−1)iA∂tl
A , i = 1, 2 ,

w=−(D−1)3
A∂tl

A ,

}
(4.17)

where, as usual, we sum on repeated indices. Variations in (4.16) with respect to lA

yield the non-dimensional Euler equations for kinematic boundary conditions (2.9)–
(2.11). The constraint D = 1 imposed by the Lagrange multiplier p (the pressure)
implies incompressibility. For more details, see e.g. Holm, Marsden & Ratiu (1986)
and Miles & Salmon (1985).

Following Miles & Salmon (1985), we restrict the action principle (4.16) to variations
among solutions of the following form for the Lagrangian labels (this restriction is
equivalent to the columnar motion ansatz in equation (2.28)):

lA = l̃
A
(x, t) , A = 1, 2 ,

l3 = l̃
3

=
z + b

ε2h+ b
≡ z + b

η(x, t)
,

 (4.18)

from which (4.17) implies u = u(x, t) and, hence, w = −z∇ · u−∇ · (bu). For restricted

solutions of this type, D = D = D̃l̃
3

,3 = D̃/η; so performing the vertical integrations
reduces the action (4.16) to

AGN = 1
2

∫
dt

∫
dxdy

[
η|u|2 + δ2

(
1
3
η3(∇ · u)2 + η2(∇ · u)(u · ∇b) + η(u · ∇b)2

)]
− 1

2

∫
dt

∫
dxdy η(η − 2b) +

∫
dt

∫
dxdy p (D̃ − η) , (4.19)

where η = b+ ε2h = D̃ on the constraint manifold, D̃ = det
(
∂il̃

A)
and p is the layer

mean of p. The kinetic energy terms in the action AGN agree with the layer mean
relation (4.5).

For such columnar solutions, advection of the fluid labels implies

∂tl̃
A

= −u · ∇l̃A ⇒ u = − ∂x
∂l̃
A
∂tl̃

A
, i, A = 1, 2 , (4.20)
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and incompressibility implies η = D̃, cf. equation (3.17). Consequently, we may take

variations of AGN with respect to l̃
A

at fixed x, y and t, by using the chain rule for
variational derivatives.

Neglecting terms of O(ε2) in AGN gives

AGL = 1
2

∫
dt

∫
dxdy

[
D̃|u|2 + δ2

(
1
3
D̃3(∇ · u)2 + D̃2(∇ · u)(u · ∇b) + D̃(u · ∇b)2

)]
+

∫
dt

∫
dxdyp (D̃ − b) + O(ε2) . (4.21)

Taking variations of AGL with respect to l̃
A

at fixed x, y and t gives the GL equations
(2.42) with h = p. Thus, the GL equations (2.42) extremize the layer mean kinetic
energy subject to the rigid-lid constraint, D̃ = b, which is imposed by the layer mean
pressure as a Lagrange multiplier.

5. Green–Naghdi equations
This Section discusses the relation between the GL equations (2.42) and the Green–

Naghdi (GN) equations (Green & Naghdi 1976) for nonlinearly dispersive gravity
waves in shallow water. The GN equations are (in dimensional form)

∂tu=−u · ∇u− g∇(η − b) +
1

η
∇
(
η2 dα

dt

)
−
(

dβ

dt

)
∇b ,

∂tη=−∇ · (ηu) ,

 (5.1)

where η(x, t) = b(x) + h(x, t) is the local depth of the water. The quantities α and β
are given by

α= 1
3
η∇ · u+ 1

2
u · ∇b = −1

3

dη

dt
+

1

2

db

dt
,

β = 1
2
η∇ · u+ u · ∇b = −1

2

dη

dt
+

db

dt
,

 (5.2)

and d/dt = ∂t + u · ∇ is the material derivative following the horizontal velocity, u.
The GN equations provide a vertically averaged description of shallow-water motion
with a free surface under gravity. These equations were derived in the setting of one
horizontal dimension and a flat bottom by Su & Gardner (1969) as a dispersive
correction to the usual shallow-water equations. They were derived in the more
general setting used here by Green & Naghdi (1976) by requiring the incompressible
columnar motion to satisfy conservation of energy and invariance under rigid body
translations. They were rediscovered by Bazdenkov, Morozov & Pogutse (1985),
who also considered the case of a rotating frame. Finally, they were derived from
Hamilton’s principle with action (4.19) by Miles & Salmon (1985).

The GN equations retain finite-amplitude gravity waves and their associated Bous-
sinesq-type dispersion properties, which are neglected in the GL equations upon
taking the small-amplitude limit (ε2 → 0). We show here that the GL equations
can be understood as the small-wave-amplitude limit of the GN equations. In fact,
we could have derived the GN equations as an intermediate step in our asymptotic
expansion for the Euler equations in §2, by not imposing small Froude number
(and, thus, small wave amplitude). The GN equations possess local conservation
laws of energy and vorticity which, in complete analogy with the GL equations, are
manifestations of the layer mean equations (4.3) and (4.8). In addition, the similarity
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of the action AGN in (4.19) for the GN equations to the action AGL in equation
(3.14) or (4.21) for the GL equations also makes it possible to transfer many of the
structural results of §3 for GL immediately over to the GN case. For example, see
Camassa et al. (1996) for a parallel description of the Hamiltonian formulations of
these two sets of equations.

The global well-posedness of classical solutions for the GL equations has recently
been established by Levermore & Oliver (1997) and Oliver (1997a). This result
provides a foundation for a rigorous justification of the formal derivation of the
GL equations given in the previous Section. Indeed, Oliver (1997b) gives a rigorous
justification of the derivation of the lake equations from the rigid-lid Euler equations
for the case of periodic lateral boundary conditions. From our viewpoint, it is
worthwhile to make the connection between the GL equations and the GN equations,
because the global well-posedness of the GL equations validates the use of the GN
equations over long times, in the limit of small wave amplitude. No such result
exists for the GN equations. For finite wave amplitudes, a numerical comparison
of the GN equations with the Euler equations for finite-wave amplitude free-surface
incompressible flow over bottom topography has recently been discussed by Nadiga,
Margolin & Smolarkiewicz (1996). They show that numerical simulations of the GN
equations tend to be faithful representations of the corresponding Euler solutions, so
long as wave breaking does not occur.

The GN equations (5.1)–(5.2) can assume a different form, one which is more natural
from a variational standpoint and which is similar to that of the GL equations (2.42).
Using the operator L(η, b) defined in (3.15) and introducing the auxiliary field

ηvGN ≡ L(η, b)u , (5.3)

the first equation in the GN system (5.1)–(5.2) can be rewritten (by using the second
equation in (5.1) and judiciously differentiating by parts) in the form

∂tvGN + u · ∇vGN + (∇u)vGN
+ ∇

(
g(η − b)− 1

2
|u|2 − 1

2

(
η∇ · u+ u · ∇b

)2
)

= 0 . (5.4)

The GL equations (2.42) now follow immediately from this form of the GN equations
by formally taking the asymptotic limit ε→ 0 after the rescaling in which

∇ 7→ ∇ , ∂t 7→ ε ∂t , u 7→ ε u , η 7→ b+ ε2h , (5.5)

so that

g(η − b) 7→ ε2gh , L(η, b) 7→ L(b) + O(ε2) ,(
η∇ · u+ u · ∇b

)2 7→
(
∇ · (bu)

)2
+ O(ε2) .

The rescaled GN equations in this small-Froude-number limit reduce to the system

∂tvGN + u · ∇vGN + (∇u)vGN + ∇
(
gh− 1

2
|u|2
)

= O(ε2) ,

∇ · (bu) = O(ε2) , bvGN =L(b)u+ O(ε2) ,

 (5.6)

where L(b) is given in equation (3.1). When the O(ε2) terms are dropped, we see
that this asymptotic limit of the GN equations (5.1), which corresponds to looking at
small surface height displacements over long time scales, reduces to the GL equations
(2.42). Notice that, in complete analogy with the GL equations, the auxiliary field vGN
can be interpreted as the vector whose curl represents the locally conserved density
(4.8) to O(δ4) (see Camassa et al. 1996 for further discussion).
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